POWER7 Processors: The Beat Goes On

Joel M. Tendler, Executive IT Architect
jtendler@us.ibm.com

Acknowledgment: This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002
IBM Power Systems value proposition

Deliver business value by leveraging technology

. . . the highest value at the lowest risk with leading technology
Approaching 20 Years of POWER Processors

Major POWER® Innovation
-1990 RISC Architecture
-1994 SMP
-1995 Out of Order Execution
-1996 64 Bit Enterprise Architecture
-1997 Hardware Multi-Threading
-2001 Dual Core Processors
-2001 Large System Scaling
-2001 Shared Caches
-2003 On Chip Memory Control
-2003 SMT
-2006 Ultra High Frequency
-2006 Dual Scope Coherence Mgmt
-2006 Decimal Float/VSX
-2006 Processor Recovery/Sparing
-2009 Balanced Multi-core Processor
-2009 On Chip EDRAM

* Dates represent approximate processor power-on dates, not system availability
POWER Roadmap – The Only Reliable Server Roadmap

2001
POWER4

2004
POWER5

2007
POWER6

2010
POWER7*

- **Very High Frequencies 4-5GHz**
- **Enhanced Virtualization**
- **Advanced Memory Subsystem**
- **Altivec Vector SIMD instructions**
- **Instruction Retry/Alternate Processor Recovery**
- **Decimal Floating Point**
- **Dynamic Energy Management**
- **Partition Mobility**
- **Memory Protection Keys**
- **Advanced Memory Sharing**

First Dual core chip in industry
- Chip Multi Processing - Distributed Switch - Shared L2
- Dynamic LPARs (32)

First Quad core in industry
- 2.3 GHz POWER5+
- Enhanced Scaling
- Simultaneous Multi-Threaded (SMT)
- Enhanced Distributed Switch
- Enhanced Core Parallelism
- Improved FP Performance
- Increased memory bandwidth
- Micropartitions
- Virtualized IO

Fastest chip in industry
- 5GHz 2 Cores
- Alti - Vec
- L2 Cache
- Advanced System Features

Upgrades to be available for Power 570 & Power 595

BINARY COMPATIBILITY

*All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
POWER7 Processor Chip

- 567mm² Technology: 45nm lithography, Cu, SOI, eDRAM
- 1.2B transistors
 - Equivalent function of 2.7B
 - eDRAM efficiency
- Eight processor cores
 - 12 execution units per core
 - 4 Way SMT per core
 - 32 Threads per chip
 - 256KB L2 per core
- 32MB on chip eDRAM shared L3
- Dual DDR3 Memory Controllers
 - 100GB/s Memory bandwidth per chip
- Scalability up to 32 Sockets
 - 360GB/s SMP bandwidth/chip
 - 20,000 coherent operations in flight
- Advanced pre-fetching Data and Instruction
- Binary Compatibility with POWER6 and prior systems

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Computer Systems Memory: DRAM

- Dynamic RAM
 - Uses MOSFETs and Capacitors
 - Charge, i.e., “0” or “1”, decays over time (capacitor discharges) losing its state
 - To be useful, cell needs periodic refreshing (dynamic)
 - Volatile memory (data lost when memory is not powered)
- Each cell stores 1 bit
 - Memory cell: 1xMOSFET + 1xCapacitor
- Comparison with SRAM
 - Less components, much more dense
 - Higher latency, variable access timings
 - Charge refresh & amplification complexity
Computer Systems Memory: SRAM

- Static RAM
 - Uses transistors only, e.g., MOSFET
 - Charge does not need to be refreshed (static)
 - Uses bi-stable latching circuitry
 - Volatile memory (data lost when memory is not powered)
- Each cell stores 1 bit
 - 6 or more MOSFETs
- Comparison with DRAM
 - Uses more components per bit
 - Lower latency
 - Higher frequency access
 - Simpler access interface
POWER7 Design Principles:

Multiple optimization Points

- Balanced Design
 - Multiple optimization points
 - Improved energy efficiency
 - RAS improvements
- Improved Thread Performance
 - Dynamic allocation of resources
 - Shared L3
- Increased Core parallelism
 - 4 Way SMT
 - Aggressive out of order execution
- Extreme Increase in Socket Throughput
 - Continued growth in socket bandwidth
 - Balanced core, cache, memory improvements
- System
 - Scalable interconnect
 - Reduced coherence traffic

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.

Graphs for illustration purposes only (Not actual data)
POWER7 Design Principles:

Flexibility and Adaptability

- **Cores:**
 - 4, 6, and 8-core offerings with up to 32MB of L3 Cache
 - Dynamically turn cores on and off, reallocating energy
 - Dynamically vary individual core frequencies, reallocating energy
 - Dynamically enable and disable up to 4 threads per core

- **Memory Subsystem:**
 - 4 or 8 channel configurations

- **System Topologies:**
 - Standard, half-width, and double-width SMP busses supported

- **Multiple System Packages**

 2/4s Blades and Racks
 - Single Chip Organic
 - 1 Memory Controller
 - 3 4B local links

 High-End and Mid-Range
 - Single Chip Glass Ceramic
 - 2 Memory Controllers
 - 3 8B local links
 - 2 8B Remote links

 Compute Intensive
 - Quad-chip MCM
 - 8 Memory Controllers
 - 3 16B local links (on MCM)

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
POWER7: Core

- Execution Units
 - 2 Fixed point units
 - 2 Load store units
 - 4 Double precision floating point
 - 1 Vector unit
 - 1 Branch
 - 1 Condition register
 - 1 Decimal floating point unit
 - 6 Wide dispatch/8 Wide Issue
- Recovery Function Distributed
- 1,2,4 Way SMT Support
- Out of Order Execution
- 32KB I-Cache
- 32KB D-Cache
- 256KB L2
 - Tightly coupled to core
Computer Systems Memory: Hierarchy

- Memory wall
 - Differential in “performance” between addressable memory and the microprocessor
- Implement a memory hierarchy and intelligence to reduce access times/latency
- Combination of memory-cell technology and “distance” from the processor

Typical Memory Hierarchy

- Registers
- Instruction cache
- Data cache
- L2 cache
- L3 cache
- DIMM Buffer ASIC
- Addressable memory
Challenge: Beating Physics to Realize Multi-core Potential

POWER7™ is an 8-core, high performance Server chip. A solid chip is a good start. But to win the race, you need a balanced system. POWER7 enables that balance.
Challenge: Beating Physics to Realize Multi-core Potential

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution

Compute Throughput Potential
Trends in Server Evolution

- A simple matter of riding the multi-core trend?
- Add more cores to the die, beef up some interfaces, and scale to a large SMP?

Enabled by:
- Technology
- Innovation

Driven by:
- IT Evolution
- Economics

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Trends in Server Evolution

Emerging Entry Server Virtualized/Cloud Platform

Enabled by:
- Technology
- Innovation

Driven by:
- IT Evolution
- Economics

- A simple matter of riding the multi-core trend?
- Add more cores to the die, beef up some interfaces, and scale to a large SMP?

Not so simple:
- Emerging entry servers have characteristics similar to traditional high-end large SMP servers

Achieving solid virtual machine performance requires a Balanced System Structure.

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Trends in Server Evolution

Enabled by:
- Technology
- Innovation

Driven by:
- IT Evolution
- Economics

Traditional Entry Server
Single Image Platform
- 2 to 4 socket
- 4 to 8-way SMP Server

Emerging Entry Server
Virtualized/Cloud Platform
- 2 to 4 socket
- 16 to 32-way SMP Server

Emerging High-End Server
UltraScale Cloud Platform
- 8 to 32 socket
- 64 to 256-way SMP Server

Traditional High-End Server
Virtualized Consolidation Platform
- 8 to 32 socket
- 16 to 64-way SMP Server

Same enablers and driving factors apply at larger scale

- * Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Challenge: How does POWER7 maintain the Balance?

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Compute Throughput Potential

Cache Hierarchy Technology and Innovation

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution
Cache Hierarchy Technology and Innovation

Cache Hierarchy Rqmt for POWER® Servers

Core

- Low Latency 2M to 4M per Core Cache footprint

Core

- Low Latency 2M to 4M per Core Cache footprint

Large, Shared, 30+ MB Cache footprint much closer than Local Memory

Challenge for Multi-core POWER7

POWER4™, POWER5™, and POWER6™ systems derive huge benefit from high bandwidth access to large, off-chip cache.

But socket pin count constraints prevent scaling the off-chip cache interface to support 8 cores.
Cache Hierarchy Technology and Innovation

Solution: High speed eDRAM on the processor die

<table>
<thead>
<tr>
<th>Conventional Memory DRAM</th>
<th>IBM ASIC eDRAM</th>
<th>IBM Custom eDRAM</th>
<th>Custom Dense SRAM</th>
<th>Custom Fast SRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense, low power</td>
<td>Off uP Chip</td>
<td>On uP Chip</td>
<td>High Area/power</td>
<td>High speed/bandwidth</td>
</tr>
<tr>
<td>Low speed/bandwidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Conventional Memory DIMMs](image1)

- Large, Off-chip 30+ MB Cache
- On-processor 30+ MB Cache
- On-processor Multi-MB Cache
- Private core Sub-MB Cache

Industry Standard Caching and Memory Technologies:
Conventional DIMMs, Dense and Fast SRAM’s.

IBM’s POWER Servers have leveraged large off-chip eDRAM caches in POWER4, 5, and 6.

With POWER7, IBM introduces on-processor, high-speed, custom eDRAM, combining the dense, low power attributes of eDRAM with the speed and bandwidth of SRAM.
Cache Hierarchy Technology and Innovation
Cache Hierarchy Technology and Innovation

Cache Hierarchy Rqmt for POWER Servers

- Core
 - Low Latency 2M to 4M per Core
 - Cache footprint
- Core
 - Low Latency 2M to 4M per Core
 - Cache footprint

Challenge for Multi-core POWER7

Need to satisfy both caching requirements with one cache.

Large, Shared, 30+ MB Cache footprint much closer than Local Memory
Solution: Hybrid L3 “Fluid” Cache Structure

- Keeps multiple footprints at ~3X lower latency than local memory.
Solution: Hybrid L3 “Fluid” Cache Structure

- Keeps multiple footprints at ~3X lower latency than local memory.
- Automatically migrates private footprints (up to 4M) to fast local region (per core) at ~5X lower latency than full L3 cache.
- Automatically clones shared data to multiple private regions.
Cache Hierarchy Technology and Innovation

Solution: Hybrid L3 “Fluid” Cache Structure

- Enables a subset of the cores to utilize the entire large shared L3 cache when the remaining cores are not using it.
Cache Hierarchy Technology and Innovation
Cache Hierarchy Technology and Innovation

Cache Hierarchy Rqmt for POWER Servers

- Core
 - Low Latency
 - 2M to 4M per Core
 - Cache footprint

- Core
 - Low Latency
 - 2M to 4M per Core
 - Cache footprint

Large, Shared, 30+ MB Cache footprint much closer than Local Memory

Challenge for Multi-core POWER7

- Low power, dense eDRAM value enhanced with low latency, high bandwidth, fast SRAM structures

IBM Custom eDRAM

Custom Fast SRAM

Dense, low power
Lower speed/bandwidth

High Area/power
High speed/bandwidth

On-processor
30+ MB Cache

Private core
Sub-MB Cache
Solution: L2 “Turbo” Cache

- L2 “Turbo” cache keeps a tight 256K working set with extremely low latency (~3X lower than local L3 region) and high bandwidth, reducing L3 power and boosting performance.
Cache Hierarchy Technology and Innovation
Cache Hierarchy Technology and Innovation

Cache Hierarchy Summary

<table>
<thead>
<tr>
<th>Cache Level</th>
<th>Capacity</th>
<th>Array</th>
<th>Policy</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Data</td>
<td>32K</td>
<td>Fast SRAM</td>
<td>Store-thru</td>
<td>Local thread storage update</td>
</tr>
<tr>
<td>Private L2</td>
<td>256K</td>
<td>Fast SRAM</td>
<td>Store-In</td>
<td>De-coupled global storage update</td>
</tr>
<tr>
<td>Fast L3 Region</td>
<td>Up to 4M</td>
<td>eDRAM</td>
<td>Partial Victim</td>
<td>Reduced power footprint (up to 4M)</td>
</tr>
<tr>
<td>Shared L3</td>
<td>32M</td>
<td>eDRAM</td>
<td>Adaptive</td>
<td>Large 32M shared footprint</td>
</tr>
</tbody>
</table>
Challenge: How does POWER7 maintain the Balance?

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Compute Throughput Potential

Advances in Memory Subsystem

Cache Hierarchy Technology and Innovation

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution
Advances in memory subsystem

Memory subsystem requirement for POWER7 processor-based servers

POWER7 Requirements

- **Core:**
 - 10GB/s to 20GB/s sustained memory bandwidth per core
 - 16GB to 32GB of cache

- **Socket:**
 - 4 times growth in memory bandwidth & capacity

- **System:**
 - Packaging more memory into similar volume, with similar energy and cooling constraints
Advances in Memory Subsystem

Multi-faceted Solution

1) Dual Integrated DDR3 Controllers
 - Massive 16KB scheduling window per POWER7 chip insures high channel and DIMM utilization
 - Sparse access acceleration
 - Advanced Energy Management
 - Numerous RAS advances

2) Eight high speed 6.4 GHz channels
 - New low power differential signaling
 - Sustained 100+ GB/s per socket

3) New DDR3 buffer chip architecture
 - Larger capacity support (32 GB / core)
 - Energy Management support
 - RAS enablement

4) DDR3 DRAMs
 - Supports 800, 1066, 1333, and 1600

* Statements regarding memory subsystem features do not imply that IBM will introduce a system with these capabilities.
Advances in Memory Subsystem
Challenge: How does POWER7 maintain the Balance?

- Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential
- Compute Throughput Potential
- Advances in Off-Chip Signaling Technology
- Advances in Memory Subsystem
- Cache Hierarchy Technology and Innovation
- Socket Throughput Limitation (Physical signal economics)
Advances in Off-chip Signaling Technology

1) Enhanced Signal-ended “Elastic Interface” Technology
2) New high speed, low power Differential Technology

<table>
<thead>
<tr>
<th>Interface</th>
<th>Signal Type</th>
<th>Info Width</th>
<th>Frequency</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-chip Cache</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Memory Channels</td>
<td>Differential</td>
<td>28 bytes</td>
<td>6.4 Ghz</td>
<td>180 GB/s</td>
</tr>
<tr>
<td>I/O Bridge</td>
<td>Single-ended</td>
<td>20 bytes</td>
<td>2.5 Ghz</td>
<td>50 GB/s</td>
</tr>
<tr>
<td>SMP Interconnect</td>
<td>Single-ended</td>
<td>120 bytes</td>
<td>3.0 Ghz</td>
<td>360 GB/s</td>
</tr>
<tr>
<td>Total Bandwidth</td>
<td></td>
<td></td>
<td></td>
<td>590 GB/s</td>
</tr>
</tbody>
</table>

(Note that bandwidths shown are raw, peak signal bandwidths)

- Moving L3 onto POWER7 along with advances in signaling technology enables significant raw bandwidth growth for both memory and I/O subsystems. Note that advanced scheduling improves POWER7’s ability to utilize memory bandwidth.
Challenge: How does POWER7 maintain the Balance?

Need to Amplify Effective Socket Throughput to Close Gap and Achieve Potential

Compute Throughput Potential

Exploit Long Term Investment in Coherence Innovation

Advances in Off-Chip Signaling Technology

Advances in Memory Subsystem

Cache Hierarchy Technology and Innovation

Socket Throughput Limitation (Physical signal economics)

Multi-core evolution
Exploit Long Term Investment in Coherence Innovation

Using local and remote SMP links, up to 32 POWER7 chips are connected
Exploit Long Term Investment in Coherence Innovation

Up to 32 POWER7 chips form a massive SMP system.

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Exploit Long Term Investment in Coherence Innovation

Coherence Protocol Features

- De-coupled global storage
- De-serialized storage updates allowing storage updates to be reordered
- De-centralized coherence resolution, and bounded latency broadcast transport layer.
- Decentralized coherence resolution, advanced cache states, optimized on-chip transport, and broadcast free barriers.

POWER7 Exploitation

- POWER Servers can drive massive coherence throughput.
 - 32-chip system can manage over 20,000 concurrently reordered coherent storage operations
 - ~4X more POWER6 systems
- Minimal tracking overhead per operation.
- Low latency intervention, robust scaling.

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
POWER7 Processors: The Beat Goes On

Exploit Long Term Investment in Coherence Innovation

Challenge: As system size grows, Coherence broadcast traffic increases

- **POWER6 High-End Server**
 - Virtualized Consolidation Platform
 - 8 to 32 socket
 - 16 to 64-way SMP Server

- **POWER7 High-End Server**
 - UltraScale Cloud Platform
 - 8 to 32 socket
 - 64 to 256-way SMP Server

Compute Throughput

1X

Global Coherence Throughput

320 GB/s

Global Coherence Broadcast

450 GB/s

Compute Throughput

~5X

Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Exploit Long Term Investment in Coherence Innovation

Solution: Speculative limited scope Coherence broadcast
- In 2003, recognized emerging trend
- Developed Dual-Scope Broadcast Coherence Protocol for POWER6
- Utilizes 13 cache states and integrated scope indicator in memory

Provides value for POWER6
- Latency reduction
- Near Perfect Scaling for extreme memory intensive workloads
- Ultra-dense packaging (Power 575)

Necessity for POWER7
- 450 GB/s must grow to 1.6 TB/s to match POWER6 scaling
- 450 GB/s ➔ 3.6 TB/s theoretical peak
- 3.6 TB/s ➔ 14.4 TB/s with chip scope

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Summary: POWER7 maintains the Balance

Achieves extreme Multi-core throughput while providing Balance and SMP scaling by building on a foundation of solid innovation.

IBM POWER chips uniquely positioned to excel given the emerging trends:
1) History of large SMP leadership
2) Storage Architecture economics
3) High density packaging leadership
POWER7: Performance Estimates

POWER7 Continues Tradition of Excellent Scalability

- Core performance increased by:
 - Re-pipelined execution units
 - Reduced L1 cache latency
 - Tightly coupled L2 cache
 - Additional execution units
 - More flexible execution units
 - Increased pipeline utilization with SMT4 and aggressive out of order execution

- Chip Performance Improved Greater then 4X:
 - High performance on chip interconnect
 - Improved storage architecture
 - Dual high speed integrated memory controllers

- System
 - Achieves extreme Multi-core throughput while providing Balance and SMP scaling by building on a foundation of solid innovation
 - Advanced SMP links will provide near linear scaling for larger POWER7 systems.

* Performance estimates relate to processor only and should not be used to estimate projected server performance.
Energy Management: Architected Idle Modes

Two Design Points Chosen for Technology

- **Nap** (optimized for wake-up time)
 - Turn off clocks to execution units
 - Reduce frequency to core
 - Caches and TLB remain coherent
 - Fast wake-Up

- **Sleep** (optimized for power reduction)
 - Purge caches and TLB
 - Turn off clocks to full core and caches
 - Reduce voltage to V-retention
 - Leakage current reduced substantially
 - Voltage ramps-up on wake up
 - No core re-initialization required

![Diagram showing Wake-Up Latency vs Energy Reduction with states Nap, Sleep, Doze, and RV Winkle Power gate](image-url)
Adaptive Energy Management: Energy Scale™

- Chip FO4 Tuned for Optimal Performance/Watt in Technology
- DVFS (Dynamic Voltage and Frequency Slewing)
 - -50% to +10% frequency slew independent per core
 - Frequency and voltage adjusted based on:
 - Work load and utilization.
 - On board activity monitors
- Turbo-Mode
 - Up to 10% frequency boost
 - Leverages excess energy capacity from:
 - Non worst case work loads
 - Idle cores
- Processor and Memory Energy Usage can be independently Balanced.
 - Real time hardware performance monitors used.
 - On board power proxy logic estimates power
- Power Capping Support
 - Allows budgeting of power to different parts of system
Power Systems – Reliability, Availability, Serviceability (RAS)
ITIC Survey says Power Systems with AIX deliver 99.997% uptime
- 54% of IT executives and managers say that they require 99.99% or better availability for their applications

- Power Systems with AIX delivers the best RAS of UNIX, Linux, Windows choices
 1. **Availability**: The least amount of downtime
 - 15 minutes a year
 - 2.3 times better than the closest UNIX competitor
 - more than 10X better than Windows
 2. **Reliability**: The fewest unscheduled outages
 - less than one outage per year
 3. **Serviceability**: The fastest patch time
 - 11 minutes to apply a patch

Source: Network World, dated July 14, 2009, reports on the 2009 ITIC Global Server Hardware & Server OS Reliability Survey Results
POWER7: Reliability and Availability Features

Dynamic Oscillator Failover
- OSC0
- OSC1

Fabric Bus Interface to other Chips and Nodes
- ECC protected
- Node hot add /repair

Core Recovery
- Leverage speculative execution resources to enable recovery
- Error detected in GPRs FPRs VSR, flushed and retried
- Stacked latches to improve SER

Alternate Processor Recovery
- Partition isolation for core checkstops

L3 eDRAM
- ECC protected
- SUE handling
- Line delete
- Spare rows and columns

GX IO Bus
- ECC protected
- Hot add

InfiniBand® Interface
- Redundant paths

- 64 Byte ECC on Memory
 - Corrects full chip kill on X8 dimms
 - Spare X8 devices implemented
- Dual memory chip failures do not cause outage
- Selective memory mirror capability to recover partition from dimm failures
- Hardware assisted scrubbing
- SUE handling
- Dynamic sparing on channel interface
- PowerVM Hypervisor protected from full DIMM failures

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.*
Power Systems Benefits

- IBM Power Systems have a consistent, reliable history of executing on schedule allowing customers to confidently plan for the future.
- IBM Power Systems offer highest performance reducing the need for additional resources.
- IBM Power Systems are designed for performance with high reliability and availability.
 - Moving towards Continuous Availability – hardware and software.
 - Reduced and shorter outages lower costs and improve SLAs.
- Virtualization capabilities intrinsic to Power Systems design allows improved service and lower costs by consolidating.
 - POWER7 systems increased to up to 1000 partitions / system.
 - POWER7 systems designed to leverage, exploit and enhance current PowerVM capabilities.
Summary

Power Systems™ continue strong

- 7th Generation Power chip:
 - Balanced Multi-Core design
 - EDRAM technology
 - SMT4
- Greater than 4X performance in similar power envelope as previous generation
- Scales to 32 socket, 1024 threads balanced system
- Building block for peta-scale PERCS project
- Achieves extreme Multi-core throughput while providing Balance and SMP scaling by building on a foundation of solid innovation

POWER7 Systems Running in Lab

- AIX®, IBM i, Linux® all operational

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
POWER7 Processors: The Beat Goes On

Joel M. Tendler, Executive IT Architect
jtendler@us.ibm.com

Acknowledgment: This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002
POWER7 Processors: The Beat Goes On

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA, WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.